From Stars to Patients: Lessons from Space Science and Astrophysics for Health Care Informatics

S. George Djorgovski
California Institute of Technology

A. A. Mahabal
Caltech

D. J. Crichton
JPL

Basit Chaudhry
Tuple Health

Follow this and additional works at: http://repository.edm-forum.org/edm_briefs

Part of the [Health Information Technology Commons](https://repository.edm-forum.org/health_information_technology_commons)

Recommended Citation

http://repository.edm-forum.org/edm_briefs/19

This Conceptual Model is brought to you for free and open access by the Learn at EDM Forum Community. It has been accepted for inclusion in Issue Briefs and Reports by an authorized administrator of EDM Forum Community.
The motivation and the challenge:
Big Data are revolutionizing nearly every aspect of the modern society. One area where this can have a profound positive societal impact is the field of Health Care Informatics (HCI), which faces many challenges. The key idea here is: can we use some of the experience and solutions from the fields that have successfully adapted to the Big Data era, namely astronomy and space science, to help accelerate the progress of HCI?

We surveyed the publically available data sets:
-•
-•

We surveyed the HCI literature:
-•
-•

The key idea here is: can we use some of the experience and solutions from the fields that have successfully adapted to the Big Data era, namely astronomy and space science, to help accelerate the progress of HCI?

An Approach to HCI
It is a complex field with many constituencies and goals:
Health Care Data Domains/Stakeholders:
- Research Biomedical, Clinical
- HC Delivery Clinical, Patients
- Management
- HC Providers: Hospitals, HMOs...
- Commercial: Insurance, Pharma...
- Government: Local, State, Federal
- requiring multiple solutions

We surveyed the HCI literature:
- Published studies cover: Bioinformatics; Neuroinformatics; Clinical Informatics; Public Health Informatics; Translational Bioinformatics
- Tools/analytics used include: Fuzzy trees, Random Forests, Area Under the Curve, Sensitivity, Specificity, Social Networks and Crowdsourcing
- The most frequently cited problems include:
 - Lack of interoperability, standards
 - Especially across data types: patients, disease, treatments, healthcare management
- There is great diversity in platforms/systems used, a likely hindrance to reproducibility: CareWeb, Cardigam, Amalga, CER Hub, RedK, GLORE etc.

We surveyed the publically available data sets:
- Most data are not publicly exposed due to: Proprietary nature; Monetary interests; Information blocking; Privacy issues
- Typical available data sets cover molecular, tissue, patient, population studies – but not in a connected fashion (diversity of formats and access mechanisms)
- Typical sizes of the publicly available data range from 4B (highly derived data products) to 40T or even PB (raw instrument data)
- Most data sets do not have enough: metadata, standards, provenance
- Privacy protection limits hinder the attempts at reproducibility and possibilities of connecting multiple datasets easily
- There is growing emphasis on sustainability, rewards systems, usability

An Example of a Successful Methodology Transfer From Space Science to Medicine:
Using a state-of-the-art informatics infrastructure developed at JPL and leveraging successful efforts to build similar open source systems in space science, open-source Object Oriented Data Technology (OODT) to design and an effective national integrated Knowledge System for the National Cancer Institute’s Early Detection Research Network (EDRN).

The Virtual Observatory (VO) Concept:
A complete, dynamical, distributed, open research environment for the new astronomy with massive and complex data sets
VO provides and federates data and metadata from distributed archives, develops and provides data services, standards, and data analysis and exploration services

Today, VO is the global data grid of astronomy, and is regarded as one of the success stories of the virtual scientific organizations and cyberinfrastructure

Conclusions and Recommendations:
As the example above shows, data methodology transfer from astronomy and space science into HCI is clearly possible, at least within a given domain. However, the greater complexity and sociological issues will likely delay progress.

The Key Outstanding Challenges:
• The HCI community does not yet have a well developed data culture and technical skills; acquiring them will take some time and resources
• The data and metadata must be understood, relevant, repeatable, with standard formats, properly curated, with interoperability protocols
• Diverse stakeholders may have conflicting interests, yet find common goals
• Adequate, but not stifling privacy protection mechanisms are needed

A Recommended Path Forward:
• Promote multidisciplinary collaborations between communities of practice that have developed large scale open data environments (e.g., astronomy, space science, physics) and HCI
• Organize knowledge transfer activities through which best practices and lessons learned can be shared between research communities to help accelerate progress in HCI
• Work with funding agencies to facilitate multidisciplinary collaboration around large scale data analysis and infrastructure development
• Facilitate development of training programs in HCI that draw on expertise from other domains

This work was supported in part by a grant from the AcademyHealth Electronic Data Methods Forum, by the Center for Data-Driven Discovery at Caltech, and by the Center for Data Science and technology at JPL