Application of Social Network Analysis to a Public Health Emergency Preparedness-Funded Workforce Program

Christine A. Bevc, PhD, MA,¹
Milissa L. Markiewicz, MPH, MIA,¹ Jennifer Hegle, MPH,¹
Jennifer A. Horney, PhD, MPH,¹ Lana Deyneka,² and Pia D.M. MacDonald, PhD, MPH¹

¹University of North Carolina - Chapel Hill
²North Carolina Division of Public Health

Background

- Social network analysis seeks to understand individual actions in the context of structured relationships (or the structures directly).\(^1,2\)
- Considerable work on disease epidemics and transmission networks \(^3,4\)
 - Examples: HIV/AIDS,\(^5\) STDs (Chlamydia, Gonorrhea, Syphilis),\(^6\) SARS,\(^7\) H1N1,\(^8\) Smoking,\(^9\) and Obesity\(^10\)
- Shift focus towards public health surveillance system
 - Detection, monitoring, and reporting of possible public health outbreaks and emergencies, including bioterrorism

Public Health Epidemiologists

• Introduced in 2003 by North Carolina Division of Public Health (DPH)
 – CDC PHEP-Funded Workforce Program
 – Provide LHDs and NC DPH with a dedicated point of contact within 11 major hospitals

• Primary tasks and responsibilities
 – 46% time spent surveillance, detection, and monitoring
 – 21% time spent assisting LHDs
 – Educating and communicating with clinicians, hospitals, and the public health system
Study Objectives

- Examine the relationship and patterns of interaction among hospital-based public health epidemiologists (PHEs) and their partners related to public health surveillance activities
 - To identify key actors and partnerships in the public health epidemiologist (PHE) network to understand how these relationships impact current and potential flows of information and communication
 - To determine the extent to which the program fulfills its intended liaison role between LHDs and local hospitals
Methodology

Defining the Network11,12

- **Actors** – Public health departments/districts, hospitals, and public health epidemiologists
- **Edges** – Relationship and patterns of reported interaction (e.g. info requests, lab results, disease outbreak) among PHEs and their partners related to CD surveillance activities

Collecting the Data

- **Survey** – Roster checklist, open-ended - LHDs
- **Qualitative interviews** with PHE and hospital staff

Network analysis was conducted in \textit{R} using \textit{statnet} package.13

Interactions within PHE Program

Common Reported Interactions among PHEs-LHDs-Hospitals
Based on Survey, Interview, and Program Data

- Support and Services
 - Case Investigations/Event Information
- Program Catchment Area
 - Referral Hospitals
 - “Preferred Partners”
- Regional Epi-Teams
 - State Preparedness Regions
 - Geographic Contiguity
- Jurisdiction
 - Public Health Reporting

PHEs

LHDs

Hospitals
Interactions within PHE Program
Basic Network Descriptives

Geographic Projection of PHE Interactions with LHDs and Hospitals
Nodes weighted by betweenness centrality

Actors
- 11 PHEs
- 85 LHDs (100 counties)
- 109 Hospitals

Edges
2,264 reported interactions
Interactions within PHE Program
Basic Network Descriptives

Interactions among PHEs-LHDs-Hospitals
Fruchterman-Reingold projection, nodes weighted according to **betweenness**

Graph-Level\(^{14,15}\)
Density = 0.047
Reciprocity = 0.923

Node-Level\(^{16}\)
Degree, \(\mu = 20.6\)
- \(\mu_{\text{PHE}} = 15.1\)
- \(\mu_{\text{LHD}} = 18.8\)
- \(\mu_{\text{Hospitals}} = 1.9\)
Betweenness, \(\mu = 528.1\)
- \(\mu_{\text{PHE}} = 3086.8\)
- \(\mu_{\text{LHD}} = 814.3\)
- \(\mu_{\text{Hospitals}} = 7.4\)

Measurement and Assessment

- Validate qualitative findings assoc w/ PHEs
 - Providing a communication channel between LHDs and clinicians/other hospital staff
 - Providing a “bridge”\(^\text{17}\) between local/state public health
- Gould-Fernandez brokerage analysis\(^\text{18,19,20}\)
 - Differentiate specific roles in the public health surveillance system
 - Determine whether PHEs fulfill liaison role

Brokerage Analysis

The **liaison** role identifies the frequency in which PHEs (or others) may serve as a “go-between” for hospitals and LHDs.\[^{22,23}\]

Brokerage Results

Brokerage Properties – Frequency Distribution

<table>
<thead>
<tr>
<th></th>
<th>Coordinator</th>
<th>Itinerant</th>
<th>Gatekeeper</th>
<th>Representative</th>
<th>Liaison</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHEs (n=11)</td>
<td>12</td>
<td>766</td>
<td>226</td>
<td>179</td>
<td>873</td>
</tr>
<tr>
<td>LHDs (n=85)</td>
<td>2,884</td>
<td>242</td>
<td>3,557</td>
<td>2,589</td>
<td>340</td>
</tr>
<tr>
<td>Hospitals (n=109)</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>32</td>
</tr>
<tr>
<td>Total</td>
<td>2,896</td>
<td>1,024</td>
<td>3,783</td>
<td>2,768</td>
<td>1,245</td>
</tr>
</tbody>
</table>

Source: Lind et al. 2008.

Brokerage Results

Brokerage Properties (within Groups)

<table>
<thead>
<tr>
<th></th>
<th>Coordinator</th>
<th>Itinerant</th>
<th>Gatekeeper</th>
<th>Representative</th>
<th>Liaison</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHEs (n=11)</td>
<td>0.6%</td>
<td>37.3%</td>
<td>11.0%</td>
<td>8.7%</td>
<td>42.5%</td>
</tr>
<tr>
<td>LHDs (n=85)</td>
<td>30.0%</td>
<td>2.5%</td>
<td>37.0%</td>
<td>26.9%</td>
<td>3.5%</td>
</tr>
<tr>
<td>Hospitals (n=109)</td>
<td>---</td>
<td>33.3%</td>
<td>---</td>
<td>---</td>
<td>66.7%</td>
</tr>
</tbody>
</table>

Source: Lind et al. 2008.

Brokerage Results

Brokerage Properties (across Groups)

<table>
<thead>
<tr>
<th></th>
<th>Coordinator</th>
<th>Itinerant</th>
<th>Gatekeeper</th>
<th>Representative</th>
<th>Liaison</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHEs (n=11)</td>
<td>0.4%</td>
<td>74.8%</td>
<td>6.0%</td>
<td>6.5%</td>
<td>70.1%</td>
</tr>
<tr>
<td>LHDs (n=85)</td>
<td>99.6%</td>
<td>23.6%</td>
<td>94.0%</td>
<td>93.5%</td>
<td>27.3%</td>
</tr>
<tr>
<td>Hospitals (n=109)</td>
<td>---</td>
<td>1.6%</td>
<td>---</td>
<td>---</td>
<td>2.6%</td>
</tr>
<tr>
<td>Overall</td>
<td>24.7%</td>
<td>8.7%</td>
<td>32.3%</td>
<td>23.6%</td>
<td>10.6%</td>
</tr>
</tbody>
</table>

Source: Lind et al. 2008.

Brokerage by PHEs

Geographic Projection of PHE Interactions with LHDs and Hospitals

Nodes weighted according to brokerage score, liaison role
Conclusions

- Brokerage analysis provides one approach to help assess and validate a PHEP-funded program

- Limitations
 - Does not explore factors/attributes influencing roles
 - Limited only to public health and program-related activities
 - Snapshot w/in past year (May-Sept 2010)

- PHEs improves information and communication in routine/non-routine public health events
 - Greatly enhanced completeness (58.9%) and timeliness (66.1%) of H1N1 reporting in the community
 - Greatly enhanced (62.7%) communication between hospitals and local health departments, i.e. CD reporting/investigation
Implications and Directions

- Informing stakeholder decision-making
 - Reports and follow-up discussions within 60 days
- Evaluating the hospital catchment area
 - State-wide system coverage
- Assessing the time-lag reduction
 - Timeliness of info requests*
 - PHE Hospitals (39.8%)
 - Non-PHE (15.7%)
- Building a robust model
 - Identifying program factors
 - Incorporation of actor attributes

* Response time of “immediately” - when LHDs asked about time to receive requested information
North Carolina Preparedness & Emergency Response Research Center (NCPERRC)

Application of Social Network Analysis to a Public Health Emergency Preparedness-Funded Workforce Program

Christine A. Bevc, PhD, MA
University of North Carolina - Chapel Hill

Milissa L. Markiewicz, MPH, MIA
University of North Carolina - Chapel Hill

Jennifer Hegle, MPH
University of North Carolina - Chapel Hill

Jennifer A. Horney, PhD, MPH
University of North Carolina - Chapel Hill

Lana Deyneka
North Carolina Division of Public Health

Pia D.M. MacDonald, PhD, MPH
University of North Carolina - Chapel Hill

Phone: (919) 966-0341
Email: bevc@unc.edu

This research is a part of the North Carolina Preparedness and Emergency Response Research Center (NCPERRC) which is part of the UNC Center for Public Health Preparedness at the University of North Carolina at Chapel Hill’s Gillings School of Global Public Health and was supported by the Centers for Disease Control and Prevention (CDC) Grant 1PO1 TP 000296. The contents are solely the responsibility of the authors and do not necessarily represent the official views of CDC.

For additional information: http://nccphp.sph.unc.edu/ncperrc/